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Abstract

In this paper we present an approach for detection of sim-
ple objects in RGB-D data. Object detection in cluttered
indoors environments is an important perceptual capa-
bility of robotic systems required for object search and
pick and deliver tasks. For long term autonomy robots
should learn how objects look like and where they ap-
pear in an weakly supervised manner. In this work we
exploit the depth information to provide evidence about
occlusion boundaries and scale of the objects. The depth
discontinuities along with image contours computed
in the vicinity of the detection window boundary form
an objectness measure, which is used to train an SVM
classifier. In the testing stage we exploit the knowledge
of the actual size of the object to propose the scale of
the detection window significantly pruning the number
window candidates to be evaluated. We evaluate our
approach for detecting simple objects on NYU RGB-D
dataset, illustrate the effectiveness of our approach as
well as difficulties with the standard evaluation method-
ologies.

With the advent of RGB-D cameras in recent years sev-
eral approaches towards object detection, semantic seg-
mentation and activity recognition as well as more gen-
eral scene understanding have been developed [14, 12, 9].
The proposed approaches demonstrated the improved
performance compared to purely image based methods
thanks to availability of the depth data . Due to the range
limitations of the sensor, most of the proposed methods
focus on indoor environments. Different datasets have
been proposed by researchers which are used for evalua-
tion of respectively for semantic segmentation [16, 11],
object detection and categorization [12] and localiza-
tion [17]. These problems and class of environments
commonly considered have are closely motivated by
issues related to robot perception.

In order to enable long term robot autonomy and facil-

itate the more sophisticated robotics tasks, it is important
that robots can localize objects at different scales in clut-
tered environments. In robotic setting the capability of
generating hypotheses about presence of objects with
particular aspect ratio and of particular size is of interest
for tasks like object search, which precedes closer catego-
rization, more detailed segmentation and manipulation.
Hence considering this capability in the context of object
search, it is also reasonable to assume that the actual size
of the object to be located is known.

Figure 1: (a) Example scenes, with small simple objects
and their bounding boxes from NYY RGB-D V1 dataset
(b) Ground Truth labeling associated with the dataset,
focuses typically on large regions. Many small objects
are missed.

The goal of this paper is to advance the state of the art
of detection of simple objects in cluttered RGB-D scenes.
We consider simple objects where the apparent size of
the object is possibly small and object’s bounding box
approximates well the extent of the object. Some related
works approach this problem by means of semantic seg-
mentation of the entire image, or use models of human
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attention to generate possible hypotheses about object
location and size. In our approach we pursue the slid-
ing window approach to object detection and make the
following contributions: (i) We define an objectness mea-
sure computed over windows of both images and depth
maps and use it to train a SVM classifier for scoring the
windows as object or background; (ii) The classifier is
trained on all bounding boxes regardless of the object
size and aspect ratio; (iii) In the detection stage we sam-
ple the actual object sizes to determine the scale of the
window, significantly pruning the number of windows
which need to be evaluated. The proposed approach
is evaluated on a subset of scenes in NYU RGB-D V1
dataset, demonstrating the performance of the detection,
compared to ground truth labeling.

1 Related work

The proposed work is related to several areas of research
including semantic segmentation, object detection and
saliency detection. While there is a large body of ap-
proaches which study these problems in the context of
images only, we will focus here on the methods which
exploit the depth information.

As mentioned before the nature of the datasets used
to evaluate approaches to semantic segmentation and
object detection and segmentation differ in their charac-
teristics. The most important one is the scale at which
objects appear in images. A successful approach to ob-
ject detection in RGB-D data was proposed in the work
on [13], where the objects are viewed in a table top
setting at moderate scale. The authors formulated the
object detection problem as an inference on a voxel grid,
reconstructed from multiple frames of RGB-D data. The
final inference is carried in MRF framework, where the
data term accumulates evidence from the sliding win-
dow based detectors trained on different views of the
objects. A variant of the HOG descriptor [12] was used
for capturing the appearance and shape information of
each view of an object and trained using SVMs. The
outputs of multiple HOG detectors and multiple views
were then combined to generate the score of the object
presence at each 3D point. Additional features computed
from the depth channel were used in the pairwise term
of MRF model which further improved the object local-
ization capability. The larger extent of the objects in the
dataset [12] and sufficient number of training examples
made the use of HOG detector feasible. Another related
work on unsupervised object discovery [3] has shown
promising results for closer range and small amount of
clutter.

In the presented work we focus on the localization
of simple objects in cluttered scene, such as the one de-
picted in Figure 1. Instead of striving to achieve com-
plete semantic segmentation of these types of scenes as
in [16, 9], we instead want to generate simple object hy-

potheses. The notion of a simple object here is the type of
object whose shape can be well delimited by a bounding
box. Our work is most closely related to work of [1] who
considers the problem of detection of generic simple ob-
jects in an unsupervised setting. Authors in [1] use the
computation of the boundary using both RGB and depth
data, followed by a selection of salient points and bound-
ary completion. This methods is very effective on closer
range table top settings, where both depth discontinu-
ities and support surfaces can be well estimated and the
process of detection of image contours is more reliable.
Their methods relies on a high quality contour detec-
tor [7], which is quite expensive to compute. While the
produced contours are of high quality, the subsequent
processing steps rely on more accurate depth estimates
and supporting surfaces, which are harder to attain with
varying viewpoints and far distance. With the change
of scale of depth measurements, in many instances the
depth measurements are missing and due to the com-
mon use of image in painting techniques the intensity
and depth boundaries are not well aligned, making the
contour based segmentations techniques very brittle.

Our approach is closely related and motivated by
work of [2], who proposed a method for generic object
detection in natural images. Authors in [2] pursue slid-
ing window approach and learn how to classify generic
backgrounds from object categories using cues character-
izing the length of the contour close to the boundary slid-
ing window, saliency measure and difference between
color histograms in the outside and inside of the bound-
ing box. The features are combined in Bayesian frame-
work and greedy search over high scoring windows of
all aspect rations and scales is proposed to select the
top candidates. The approach performs well on the de-
tection of isolated and often small number of objects in
outdoors scenes (as tested in on PASCAL-VOC dataset).
In indoors settings due to large amount of clutter color
contrast feature is not so effective and the window scor-
ing strategy along with greedy approach tends to selects
windows of bigger size, missing smaller objects. In our
work we also use the idea of presence of the contour
close to object (window) boundary, but enhance the fea-
tures by considering also the depth gradients, which are
indicative of occluding contours. Instead of perform-
ing a greedy search, we use the depth information to
select the scale of the window over which the score are
computed, hence by passing the search over all possible
aspect ratios and scales.

Another class of methods formulates the problem of
object detection using over segmentation as initial repre-
sentation and combines local evidence such as shape, ap-
pearance with pairwise interactions between regions in
a MRF framework. [15, 11, 9]. The segmentation based
approaches deal with imperfect segmentation by gen-
erating multiple segmentations and aggregating their
results to form hypothesis about regions.

Biologically motivated approaches towards object de-
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tection use as starting point various saliency measures
which are then enhanced using top-down information,
or boosted using evidence from human attention mod-
els. In Itti [8] the problem of saliency object detection is
studied jointly with the object search problem, where a
model for combining bottom and top down cues is inves-
tigated. The idea of combining high level concepts and
low level features to improve current saliency models
as well as to scale up current models to reach the hu-
man performance has been explored in the work of [5].
More recently the role of depth information in bottom up
saliency models have been studied in [6] demonstrating
that the availability of depth information affects human
fixation. Authors propose to incorporate novel depth
saliency priors to augment existing approaches which
used only appearance information.

The goal of our work is to generate hypotheses about
presence of objects in cluttered scenes. Examples of such
scenes can be found in Figure 1. While there is large
variety of objects and object classes, we are interested in
detecting smaller objects which could possibly be ma-
nipulated. Note the scenes have large amount of clutter
and large variety of objects appearing in them. For our
experiments we use NYU RGB-D dataset [16], which
as been introduced recently in the context of semantic
segmentation.

2 Approach

In this section we describe the choice of the features and
method for scoring of the candidate windows. Simi-
larly as [2] our approach exploits the observation of the
presence of the object boundary in the vicinity of the
bounding box. This assumption is reasonable provided
that the objects are relatively simple shapes, and major-
ity of the true object boundary is close to the bounding
box of the object (Figure 2).

Features We compute the gradient orientations in
four blocks depicted in Figure 2c obtained by shrink-
ing the bounding box boundary by θbar % of the size
of the bounding box. The value θbar = 10% has been
used in current experiments. We also enlarge the win-
dows of the ground truth bounding boxes by 5 pixels
to mitigate some of the labeling errors. In each block
we quantize the orientations from (0◦- 360◦) into 9 ori-
entation bins. This is done both for intensity and depth
channel yielding a 2 × 4 × 9 = 72-dimensional feature.
Prior to histogram computation, we normalized the gra-
dients by a total energy in the bounding box. Average
gradients of the ground truth windows, for a particular
aspect ratio are visualized in Figure 3 along with average
gradients of the windows used as negative examples.

Object size We exploit in our approach the availability
of the depth data in order to properly model the expected
scale. The distributions of object sizes as well as aspect
ratios are learned from the training data and we use this

Figure 2: Examples of objects and their bounding boxes
and close-up of the orientation energy for both intensity
and depth channel. a) b) orientation energy for paper
towel dispenser, where the image gradients and depth
gradients complement each other well; c) an example of
an object the strong orientation energy in the vicinity of
the boundary occurs only at few locations.

Figure 3: First and second columns are average depth
gradients of positive examples from kitchen and bath-
room datasets respectively. The last columns are the
gradients computed over negative examples. The two
rows visualize the averages for two different aspect ra-
tios.

prior knowledge to speed up the process of windows
sampling in testing stage. In our experiment less than
10,000 candidate windows are generated for the entire
image at full resolution of 480× 640. We firstly discretize
the aspect ratios available in the training data into 10
bins. For any pixel (x, y) in the image, the corresponding
point in the world coordinate (X, Y) can be obtained as
X = f

Z x, and Y = f
Z y using the median depth value Z in

the bounding box. So for any two image points (x1, y1),
(x2, y2) we have δx = x1 − x2 = Z

f (X1 − X2) = δX.
This means the scale of an object at some distance can
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be determined by its aspect ratio and depth. For each
aspect ration bin all possible object sizes are found by
agglomerative clustering. One example of generated
windows at some positions are shown in Figure 4, from
which we can notice the effectiveness of our approach.

Figure 4: Candidate windows in some locations, the red
box is the ground truth of an object while those green
ones are proposed by our approach. Left is a bathroom
scene and right is a kitchen scene

3 Experimental Setup

We carry out our experiment on NYU RGB-D V1 [16]
dataset, which contains 7 different scene classes which in
total has 64 scenes and 108617 frames. In the reported re-
sults, we only focus on the bathroom and kitchen scenes,
which contain many simple objects (e.g. containers) . By
filtering out those frames whose scene class has been
wrongly assigned, we get 70 frames of 6 scenes for bath-
room, and 276 frames of 10 different kitchen scenes.

The NYU dataset is typically used for evaluation of ap-
proaches for semantic segmentation. As a consequence
many small objects are not labelled and in many cases
the location of bounding boxes is not accurate and some
bounding boxes are entirely missing. The labels are
coarse (many objects are missing) and inaccurate (A
frame with its labels is given in Figure 1). Secondly,
the number of labeled objects is very small, which is
insufficient for training. For the presented evaluation
we firstly filter out the non-object labels and keep the
remaining regions and their associated labels. In order to
get larger number of training examples, we then sample
around the ground truth bounding boxes to obtain more
positive training examples. The negative examples are
generated by uniformly sampling in the entire image
(100,000) and filtering out those having a high overlap-
ping with object windows (PASCAL score greater than
0.5). Finally, we get around 20,000 to 40,000 negative
examples for one frame.

3.1 Training Stage

For each setting, 2/3 of the examples is randomly se-
lected for training. Descriptors are computed on both

positive and negative examples. We evaluate the per-
formance of the proposed image descriptor, depth de-
scriptors and concatenation of them. For classification
we used SVM with intersection kernel. Because the num-
ber of negative and positive examples is unbalanced, for
instance, there might be about 25,000 negative examples
but only about 100 positive ones in a frame, so in this
stage we experimented different ratio of the number of
negative and positive examples. As expected, the more
negative examples, the higher true negative rate. But
the true positive rate decreases as a result although not
dramatically. So in testing stage, we use the classifier
learned with balanced number of positive and negative
examples. In balanced case, we have 2041 positive exam-
ples and 2058 negative examples for kitchen setting; and
for bathroom setting we have 1779 positive examples
and 1758 negative examples.

3.2 Testing Stage

Our experiments consists of two parts. Firstly, we evalu-
ate our classifier on the object and non-object windows
in the test data. Then the evaluation is performed on all
frames, with the windows proposed by our algorithm.
Testing on known windows. For each frame in test data,
we compute descriptors for both positive and negative
windows, then we reported the true positive rate (TPR),
true negative rate (TNR), positive prediction value (PPV)
and negative prediction value(NPV) of our classifier.
Also the precision/recall curve on testing data is re-
ported. The results are shown in Figure 5 for bathroom
and kitchen scenes. We can clearly notice that the per-
formance is improved when combining depth data with
RGB image. The quantitative results are given in Table 1.

Figure 5: Precision/Recall curves for models trained
on RGB only, depth only and both. Left is the result of
bathroom scene, right is that of kitchen scene.

Testing on proposed windows In the detection stage
traditional approaches [2] examine all possible window
aspect ratios and all possible scales by generating in-
creasingly complex scoring functions and greedily se-
lecting the candidates in the subsequent steps. In our
case we use the learned distribution of actual object
sizes, to determine the apparent sizes of windows to
be scored at selected locations. To further reduce the
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bathroom TPR TNR PPV NPV
RGB 0.6206 0.8749 0.5708 0.8959
Depth 0.6257 0.8321 0.4996 0.8924
RGB-D 0.6166 0.9125 0.6537 0.8988
kitchen
RGB 0.8423 0.8403 0.2407 0.9888
Depth 0.8162 0.8442 0.2395 0.9871
RGB-D 0.856 0.8817 0.3031 0.9903

Table 1: Testing results of different training models for
bathroom and kitchen.

amount of locations visited we first over-segment the
RGB image into superpixels. We have used two differ-
ent over-segmentation strategies [10] and [18] on the
order of < 1000 small superpixels. At the center of ev-
ery superpixels the windows are generated according to
the learned distribution of aspect ratios and scales. The
results on 4 bathroom scenes and 10 kitchen scenes are
shown in Figure 6, where the odd columns are ground
truth and every even columns are our results. Our ap-
proach tends to detect all the small objects in the frame,
although in some cases some objects are not labeled in
the ground truth, an example is shown in right image of
last row in Figure 6.

In order to evaluate the accuracy of the proposed ap-
proach, 25% of boxes ground truth boxes have been
correctly detected by our approach. For evaluation we
use the PASCAL VOC (intersection/union) score of 0.5.
Despite the apparent improvement while visually exam-
ining the results, there are several reasons for low values
of the score. For small objects the PASCAL criterion of
0.5 is rather strict and it is often the case that the location
of many ground truth bounding boxes have errors which
exceed the score. Another side effect of the ground truth
labeling is the fact that many objects are labelled as a
group and many objects which we successfully detect
are not labelled at all. We also suffer at certain locations
from errors in misalignment of image and depth bound-
aries which are due to in painting algorithms used to fill
the missing values. In the supplemental material [4] we
present a comparison with the existing approaches for
object detection [2] and [1] using the code made avail-
able by authors. We also present comparison our the
sliding windows based methodology with bottom up
saliency based methods such as the methods used in [2]
to select initial windows. Since in most of these meth-
ods adopt the notion of saliency of local neighborhood,
by measuring the difference from the surroundings, the
presented examples clearly demonstrate the problem of
these methods in cluttered environments.

4 Conclusions

We have presented a method for detecting simple ob-
jects in cluttered scenes using RGB-D data. In order to
overcome the brittleness of the boundary based meth-

ods (both depth and image), we propose to adopt a dis-
criminative approach using intensity and depth gradient
features computed in the vicinity of the bounding cap-
turing the notion of closed boundary. We evaluate the
feasibility of the objectness measure on the bounding
boxes selected from the NYU RGB-D Dataset, which is
typically used for evaluation of semantic segmentation
and considers many of the small objects as part of the
background. In the actual object detection stage, we
presented a method for exploiting the available depth
information for determining the apparent size of the
objects and significantly pruning the number of win-
dow candidates which need to be evaluated. The pre-
sented approach shows promising results as well as
point out many open problems with the current eval-
uation pipelines and ground truth datasets. Further
improvements can be achieved by incorporating addi-
tional features and other types of contextual informa-
tions present in indoor environments.
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